
Physics 226: Problem Set #6
Due in Class on Thursday Oct 13, 2015

1. We saw in class that when quarks and gluons fragment into jets, the
soft particles created during the fragmentation process are produced
in colored flux tubes. This means they have limited transverse mo-
mentum with respect to the jet axis (eg the quark or gluon direction)
and that they are produced uniformly in longitudinal phase space. A
consequence of this is that production is uniform in the variable called
rapidity (usually written as y, although it has nothing to do with the
y used in deep inelastic scattering)

y ≡ 1

2
ln

(
E + p||
E − p||

)

where p|| is the particle’s momentum with respect to the jet axis.

(a) Show that a particle’s rapidity is related to its velocity along the
jet axis by the expression

y = arctanh
(
β||
)

where β|| is the velocity (v/c in units where c = 1) of the particle
with respect to the jet direction.

(b) Show that the rapidity difference between two particles in a jet is
invariant with respect to Lorentz boosts along the jet direction

(c) Show that in the limit where particle masses can be neglected the
rapidity y can be approximated by the expression

y ≈ − ln (tan (θ/2))

where θ is the angle the particle makes with respect to the jet
axis.

(d) Consider e+e− → hadrons in the center-of-mass frame where the
energies of the initial e+ and e− beams are Ebeam = Ecm/2. The
distribution of particles will be approximately uniform in y be-
tween a minimum value ymin and a maximum value ymax where
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ymin = −ymax. Using the definition of rapidity above, find an ap-
proximate value for ymax for hadrons of species h and mass mh as
a function of Ebeam.

(e) Using this result, show that the average multiplicity of final state
hadrons h of mass mh is

nh ∝ log
(
Ecm
mh

)
In other words, the multiplicity of hadrons grows logrithmically
with the annihilation energy.

2. The fragmentation function Dh
q (z) is defined as the probability that a

quark q will hadronize to produce a hadron of species h with energy
fraction between z and z + dz of the quark’s energy. These fragmen-
tation functions must satisfy conservation of momentum and of proba-
bility so that

∑
h

∫ 1

0
zDh

q (z)dz = 1

∑
h

∫ 1

zmin

Dh
q (z)dz =

∑
h

nh

where the sum is over all hadron species, zmin depends on the mass of
the hadron and the energy of the quark (zmin = mh/Eq) and nh is the
average number of hadrons of type h produced by the fragmentation
of the quark. Fragmentation functions are often parameterized by the
form

Dh
q (z) = N (1− z)α

z

where α and N are constants.

(a) Show that
N = (α + 1) < z >

where < z > is the average fraction of the quark momentum
carried by hadrons of type h after fragmentation.
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(b) Show that this formalism gives reproduces the result from prob-
lem 1(e):

nh ∝ log
(
Ecm
2mh

)
for the process e+e− → 2 jets.

3. One of the original papers on the discovery of the ψ [PRL 33, 1406
(1974)] stated that the upper bound on the width of the resonance
was 1.3 MeV. However, J. D. Jackson understood that every resonance
is described by a Breit-Wigner. He observed that the area under the
resonance curve of σ(e+e− → hadrons) (Figure 1a of the ψ discovery
paper) as a function of the energy E =

√
s was 11.5 × 103 nb MeV,

while the area under the curve σ(e+e− → µ+µ−) (Figure 1c of the same
paper) was 7.2 × 102 nb MeV. Use these facts to determine the true
width of the ψ and its branching ratio to µ+µ−. Assume branching
ratio of the ψ to µ+µ− is the same as the branching ratio to e+e− and
that the only three possible decays modes of the ψ are to e+e− pairs,
to µ+µ− pairs and to hadrons.
Note # 1: Because Mark-I detector’s ability to identify muons was
poor, it could not unambigously tell whether the events entering Fig-
ure 1c of the ψ discovery paper were in fact muons rather than pions
or kaons. Subsequent measurements have confirmed that the muon
hypothesis was in fact correct. Note # 2: This problem depends on
understanding the properties of a Breit-Wigner. See page 7 of lecture
13 for some hints.
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